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INTRODUCTION

While gas bearings have low friction losses in comparison with liquid bearings,
they are far from being "frictionless'", and in some cases the losses are
larger than those for rolling element bearings. In fact, the pressure generation
results from viscous shear. The heat generated by viscous shear can be sufficiently
large to cause appreciable thermal distortion which in turn affects the pressure
generation and the load carrying capacity. The effect of thermal distortion must

be considered in design especially where high speeds and/or large radius ratio
bearings are used. This is especially important in instruments (e.g. gyros,
accelerometers), cryogenic turbo-expanders, low power level Brayton cycle turbo-
machinery, etc. In these systems the friction loss detracts from overall efficiency.
As an example, at cryogenic helium temperatures a watt loss in the cold turbo-
expander represents 100 - 1000 watts of additional compressor power required. In
these applications it is therefore important to design the smallest possible bearing
which will support a given load with a prescribed film thickness. Any distortion
is undesirable because it reduces the load carrying capacity and increases the
power losses. This paper presents an analysis of thermal distortion of a gas '

lubricated spiral-grooved thrust bearing resulting from viscous shear.

The distortion caused by viscous shear is a function of the bearing gap, fluid vis-
cosity, and rotor speed; the degree of distortion depeﬁds on how the heat is removed
through the structure of the bearing and the amount of dimensional change induced by
temperature variations. Thus a complete analysis of this problem would include

the construciion of a detailed thermal map of the bearing parts. However, an appre-
ciation of the gross phenomenon of thermal distortion can be gained through a much
simplified analysis. The present work deals with the latter approach concerning

typical spiral-grooved bearings.

The spiral-grooved thrust bearing or Whipple plate has been chosen for the analysis
because it is most widely used in gas bearing applications. This is because of its
simplicity and because it possesses high load carrying capacity. For instance, at
conditions typical of gas bearing gyroscopes the optimized spiral-grooved thrust
bearing has about twice the load-carrying capacity of an optimized stepped thrust

bearing according to theory (Ref. 1, 2 and 3).



The theoretical advantage of spiral-grooved thrust bearings is often not fully
realized in practice. Fabrication difficulty has been regarded as the prime factor
degrading the actual bearing performance. Recent advances in manufacturing techniques
have all but completely removed this problem. There is also an inherent reason why
the theoretical performance presently available cannot be fully realized in practice.
This is because an infinite number of grooves (each of infinitesimal width) is
assumed in the theory, whereas in practice a finite number of grooves are present.

This assumption reduces the load capacity in two ways:

1) Along the ambient edge, a constant pressure is maintained, therefore
end leakage exists. This effect has been found to be relatively insigni-

ficant when there are more than fifteen grooves in the bearing (Ref. 2).

2) The bearing load capacity for spiral grooved thrust bearing increases
linearly with speed until density variation within a groove becomes
sufficiently large that further speed increase would no longer yield
a corresponding increase in load capacity. This latter effect may be
regarded as a compressibility threshold which can be estimated according
to the infinigémgroove theory and can be avoided if the number of grooves
can be made larger than a lower limit, which is approximately proportional

to the compressibility number of the bearing (Ref. 4).

With the refined manufacturing techniques and analysis there still have been many
examples where theory and practice deviated appreciably. This discrepancy can be
largely attributed to distortion. Distortion can result from several sources such as
material étability, internal stresses, pressure and thermal distortion. The effect
of thermal distortion as shown in this paper, can have a very marked influence omn

load carrying capacity and therefore must be considered in design.




GENERAL EFFECTS OF UNEVEN HEATING

When heat flows through a material, due to its thermal resistivity, there is a
temperature gradient against the direction of heat flux according to Fourier's

law of conductivity. Because the density of the material usually depends on the
temperature, the presence of temperature gradient would affect both size and shape
of the body and would also create internal stresses. Given the temperature field,
the structural constraints, and the pertinent properties of the material, all these
effects can be determined in detail from thermoelastic analysis. Clearly, like all
precision devices, the performance of a gas bearing can be immensely influenced

by the temperature effects on the size and the shape of the bearing parts.

The size effect is primarily dependent on the temperature level. If the materials

of the journal and bearing have different coefficients of thermal expansion, then

the bearing gap would vary with temperature. If a reference mean radial gap is
measured at a reference temperature, the mean radial gap would deviate from the
reference value by an amount proportional to the product of the journal radius and

the difference of the coefficients of thermal expansion and the temperature difference
from the reference temperature. If the coefficient of thermal expansion of the

bearing is larger, a rise of temperature above the reference value would increase

the radial gap. A similar situation exists with double-acting thrust bearings.

To better understand the type of shape variation or distortion of bearing as may be
caused by a non-uniform temperature field, consider a circular cylinder shown in Fig. 1.
If the temperature gradient is purely radial, the cross-section would become tapered
due to lengthwise lineal expansion. The degree of faper is proportional to the length
of cylinder. Also hoop stress would be induced such that Poisson's ratio effect would
further increase the amount of taper in proportion to the cylinder length. Except

for localized three dimensional effects near the two ends, the cylindrical surfaces
would remain cylindrical. The main distortion is the non-flatness of the ends. The
situation is illustrated in Fig. 1 (a). This problem is important if the thrust

bearing is at the end of a heat generating body.




If the temperature gradient is transverse, the cylinder would become bent as shown
in Fig. 1 (b). This situation can lead to serious misalignment difficulties for both
the cylindrical and the end surfaces. This problem can be alleviated by avoiding

geometrical dissymmetry and by appropriate thermal shielding from external heat sources.

If the temperature gradient is longitudinal, the cylindrical surfaces would become
tapered or conical, and the end faces would become spherical. Thus this form of
distortion would impair the performance of both journal and thrust bearings. In the
case of the thrust bearing, the cause for this type of distortion is built-in because
there is ample heat dissipation in the bearing film which would create an axial tempe-
rature gradient. The present work is concerned with the latter problem with specific

reference to spiral-grooved thrust bearings.

There are other factors in thermal distortions, such as the bi-metal phenomenon and
structural constraints. The significance of each of these factors vary according

to design. They are neglected in the present work.

Distortion of the Thrust Surface due to Self-Heating

A first approximation of the distortion of the thrust bearing due to viscous shear

in the bearing gap can be obtained by assuming that heat flow through the bearing

is uniform and is purely axial. Further, for simplicity, the bearing plate is assumed
to be a hollow disk. Let q' be the heat flux, then the axial temperature gradient

is

T _ ¢ . (1)
9z K ‘

where « is the coefficient of thermal conductivity; and the isotherms are planes
parallel to the bearing surface as shown in Fig. 2. The disk is presumed to be flat
if maintained at a uniform temperature.

Consider an infinitesimal radial line measured to be 6r at a rcference temperature

To’ then when this line is at T (z) its length is

St {l1+a [T (2) - T, 13

where o is the coefficient of lineal thermal expansion. A similar infinitesimal radial
line which was of the same length at the reference temperature but situated at

z + dz would now measure to be



Sr {1+ 0o [T (z + dz) - To]}

Under the influence of the axial temperature gradient, these lines deform into cir-
cular arcs; and surfaces originally normal to the undeformed axis now become spherical
surfaces. Assume unrestricted deformation, then the radius of curvature, R, can be

deduced according to the diagram in Fig. 3, in terms of the following relations:

Sr {1 +a (T - To)} Sra [T (z + dz) - T (z)]

R dz

Or,
"
RE- = 140 (T-T) ...ttt (@
Because o is of the order of lO—S/OF, a(T—TO) is typically a very small number.

Therefore, as a good approximation,
\xl
R%L&,»l* e )

It is interesting to note that R is not explicitely dependent on either the thrust
disk thickness or the temperature level. o and « are material properties, and q“
depends on the rotor speed, radius, gap, lubricant viscosity, and the detail gap

geometry.

Consider now the total amount of heat generated in the bearing film is divided between
the two parts of the bearing. Let subscripts "1" and "2" designate various quantities
associated with the two bearing parts, and let ho be the gap along the center line,

then the gap at any radius is

h=h +R {1- cos (sin -1 )}
o] 1 R
1
+ R {1- cos (sin g )} S Oy
2 R,
If %f and'%— are small, Eq. (4) can be approximated by
1 2
hy ho+I A 4+l (5)
voho ot i 43 e e e e e e e e e e e e e

1 2

Substituting Eq. (3) into Eq. (5), one obtains
3

i1 i

2] %9 a,q " |

2
; — e e e e e e e e e e e e e e e e 6
by ho + 2 K1 + K f (6)

Note that if a/«x is same for both parts of the bearing, then the bearing film shape

*This result was previously given in Ref. 5



becomes only a function of the total amount of heat generated in the bearing
film, but is independent of how it is divided between the two parts. In subsequent
work, the subscripts will be dropped and two terms on the right hand side of

Eq. (6) will be combined such that

r2

1 .
haz,ho+2R........................ (7)

In the event that q' is unevenly divided and the material properties are different,

it is understood that Eqs. (3) and (7) can still be used provided we define

- + - T €))

Vi "
1 { M9 )
2 2

Heat Generated in Deformed Bearing Gap

The heat generated in the beariﬁg film can be equated to the power required by the
friction torque. The friction torque is the integrated moment of shear stress over
the entire bearing surface. The shear stress, in turn, depends not only on the
relative sliding motion between the opposing surfaces but also on the circumferential
pressure gradient in the bearing film. Thus the friction torque would depend on the
detail geometrical parameters of the bearing gap; in the case of a spiral-grooved
thrust bearing, they include radius ratio, angle of inclination, groove depth,

groove width ratio, and groove length. In Ref. 2, the friction troque for typical
spiral grooved thrust bearings of parallel surfaces has been calculated, it was

found to be about 70% of that for plain parallel disks rotating at the same speed

Lo mo md

= .
€ o€ samé minimum

ap. The reduction in friction torque is primarily caused by the
shallow grooves which are on the outer portion of the bearing. If they were on the
inner radius of the bearing, the torque would approach that of plain disks. Thus

it would be quite satisfactory for the present purpose to calculate q" according to

a pure sliding motion between smooth surfaces separated by the gap as given by Eq. (7).



The shear stress of an area element rdrd6, is

Hwr
h

where pu is the viscosity of the fluid and w is the angular speed. The mechanical

power required to overcome the friction per unit area is:

2..2.
WY
T = Hw r
wr n

The total frictional power for the entire disk is

2n r
° w23
H = P_Tm— drdb
(o] r,
i
r
o
- 2wuw2 3 dr‘
r
ri ho+ 2R

The integration can be readily performed after expanding the integral by the method

of partial fractions. The result is

- 2 2 _ .2y _ 0
H 2T R (T r, ) -2 h R fn|———7" B €

In a gas bearing, convective heat transfer in the film is negligible, therefore all

the heat generated by the frictional power goes through the bearing surfaces, and the

total heat flux per unit area is

" —_ H

q' = f e e e e e e e e e

2_. 2
Jm (ro r, )

B ¢ (0

q'" can be eliminated between Eqs. (3) and (10), also, making use of Eq. (9), one

finds r o
I 1L+ =
2h R
1 = 2uw’RZ o 1__2_2h0,R | ———2— R G 5 D)
- J K (r >-r.,%) ™% ;2
° 7 1+ 7nx
[0}

It is useful to define the following dimensionless groupings -



2
h
. - v oA = 2J <\l e
Distortion Parameter: A = ;;2;—7 3 (r
o o}
r2o
Curvature Index: K= h R e e e e e e e e e . (12)
o
Radius Ratio: R= r, /r
i o

The distortion parameter represents the relation between frictional heat and the

radius of curvature due to thermal distortion. The curvature index is actually

the ratio of the amount of non-flatness at the bearing rim to the separation of

the bearing surfaces along the axis of rotation (see Fig. 4). Using the new definitions

Eq. (11) can be written as:

K24 an L+ ]

THR2K e e e e e e e e e e e e e (13)

1
(1R%) K
Eq. (13) is graphically shown in Fig. 5.

It is of interest to examine the above equation for extreme values of K. If the amount
of distortion is very small, K << 1, then Eq. (13) reduces to

lim

1
K<<1A=-§u+@%/K N ¢ ) |

If the amount of distortion is very large, R?K >> 1, then Eq. (13) is reduced to

lim 1 1 5
2 {1 - <
Rr>> 1" 1" TR K Vgl /K (13)

Load Capacity of Distorted Spiral-Grooved Thrust Bearings

Analysis of the spiral-grocved, gas lubricated thrust bearing was given in Ref. (4).
Geometry of such a bearing is illustrated in Fig. 6. Allowing for gap variation due
to thermal distortion, the fluid film pressure is governed by the following equations:

dp

- f Pom A ZZP = 2 A v v v v v e e e e e e e e e e e (16)
! c az 2C £
where
C'_'r/ro:
P = p/Pa;

= 2 2
6uw r / (Pa ho )

Af 1s an integration constant.

f1 and f, are coefficients determined by the gap geometry. In the grooved region,



h_ 3 Ir3+a(l-a) sin? (r3-1)2 e e e e e e e e e e (17)
f1 = () + (1 3
o a -a) T
£ = (.h_ ) a(l-a) (r3-1) (I -1) sinB cosB
2 h a+ (l-a)rs
where,
T = 1+ (Fo -1) ho/h
r = 1+ 6/h_,
o) o
= ag/ar;
In the seal region,
h
f1=(h—)3.......................... (18)
o
f2 _ 0

There are three boundary conditions to be met.

They are:
P(z;)) = 1
P(1) = 1

P(z) 1is matched between the grooved and seal regions.

The only differences between above equations from those employed in Ref. 4 are due

to gap variation and are contained in the coefficients f; and £f;.

Eq. (16) is solved on a digital computer using the Runge-Kutta method (Ref. 6).
Af is determined by successive approximation to permit matching of P(gm) between
the two regions. Upon finding P, the load capacity, W, is readily found by appropriate

numerical quadrature, In dimensionless form, this is

1

'2 = 2 (P-1) «tzdcg e e e e e e e e e e e e e e e e (20)
Trs p
o “a Ci
Allowing for thermal distortion, the load capacity of spiral-grooved thrust bearings

now depends on the curvature index K in addition to the other parameters which
include A, R, 8, Fo, a and Cm' However, K is itself a consequence of thermal dis~-
tortion and is not a convenient design parameter. Fortunately, K is related to(R
and A according to Eq. (13) and can be read from Fig. 5. Thus A, instead of K,

is the additional input parameter available to the designer. Upon reading K from
Fig. 5, one can then proceed to calculate the load capacity of the distorted thrust

bearing.
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Numerical Example

Computation of the load capacity of spiral grooved thrust bearings with thermal
distortion effects according to the procedure outlined above is a straight forward
matter. However, because of the large number of design parameters involved, it

is impractical to consider every aspect of the problem. In the following, a typical
example will be considered in order to bring out significant points of the present

analysis.

The results of the example are shown graphically in Figs. 7 and 8. Physical and
geometrical variables of the bearing in concern are given in the legends of these
figures. This bearing without distortion would be able to carry 92 lbs. with a
design gap of 0.8 mil. Once the bearing material is chosen the value of o/x is fixed.
Then for each value of ho’ there would be corresponding wvalues for Ah and W. Fig. 7
contains essentially the same information as Fig. 5, except various quantities are
given in appropriate units. Fig. 8 shows that considerable loss of load capacity or
minimum gap can occur for o¢/|L<>lO_7 ft-hr/Btu., At a/x = 2 x 10_7 ft-hr/Btu, the load
is down to 60 Ibs at 0.8 mil gap, or the gap would be 0.62 mil in order to carry
the design load of 92 1lbs. Also shown in Fig. 8 are the ranges for o/k for typical
structural material, according to Ref. 7. It is noted that most common materials

have o/« in excess of 10_7 ft-hr/Btu.

Generalization

Clearly, loss of load capacity is directly related to K, which in turn, as seen from
Fig. 5; is essentially a function of A. Since A contains other factors than a/k,

it is useful to examine what cther factors enter into the picture. The definition
for A can be rewritten as

p o= 12 > e e e e e e e e e e e e e e (21)
A p.r wa
a [o]

Since the load capacity of spiral grooved thrust bearings is proportional to Aparzo,

one can rewrite the above expression as

1 K
trw @



From this one concludes that the importance of thermal distortion for a given material
increases directly with the bearing speed and load. Actually, according to Refs. 2

and 4, for bearing optimized for load capacity, W / (Apa ﬂroz) varies with R as shown
in Fig. 9. From Figs. 5, 7 and 8 it looks reasonable to expect thermal distortion

to become significant for A < 1.0 (Ah % 0.5 ho); the realizable load capecity may

be only a fraction of the design goal due to thermal distortion. On the other hand,
for A > 3.0(Ah é 0.2 ho), the achievable load capacity would be about 75% of the

l design load. Making use of Eq. (21) and Fig. 9, %ﬁ Qﬁ) can be related to R for

| A= 1.0, 3.0 as shown in Fig. 10. Below the lower curve, thermal distortion would

be excessive and drastic measures must be taken to achieve the design goal. Above

the upper curve, distortion is not serious. In between, there is a reasonable chance
to achieve the design goal by adjusting the radius ratio R and selection of material.
However, in selection of material, attention must be paid to other design consideratioms,
proper choice of o for mating materials, bearing friction and wear characteristics,
material stability etc. Additional thermal distortion may result due to radial and
axial thermal gradients existing in the equipment. Symmetrical design often can

reduce radial gradients; most machines however, will have axial gradients.
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CONCLUSIONS

1.

Friction heat generated in the fluid film can distort the thrust surface and

cause considerable reduction in load carrying capacity.

In order to minimize the frictional power losses the bearing distortion must

be minimized.
The degree of distortion does not directly depend on the temperature level.

The amount of distortion is enhanced by a large coefficient of thermal expansion

and is reduced by a large coefficient of thermal conductivity.

Large radius ratio bearings and/or high speed rotors are more sensitive to

this type of thermal distortion.

Analysis of a typical bearing design shows that the effects of thermal distortion

can be significant for most structural materials.

Materials for minimum thermal distortion are often not satisfactory with
féépect to structural considerations and from the standpoint of friction
and wear. Application of surface coatings can alleviate the problem of friction

and wear and permit the use of materials chosen for minimum thermal distortiom.



NOMENCLATURE

a

ag/ar
£, f
1 2

» Tysete.

groove-ridge width ratio, ag/ar

width of groove and ridge respectively

coefficients in the differential eq. for the spiral-grooved thrust

bearing, eqs. (17), (18).

local gap

gap measured along the axis of rotation

increase of gap at rim due to distortion

Joule constant, 778 ft-1b/Btu

curvature index, Ah/hO

absolute pressure in the fluid-film

ambient pressure

non-dimensional fluid film pressure, p/pa

axial or longitudinal heat flux

radius measured on the thrust surface

inner and outer radii of thrust bearing

radius at the groove-seal boundary

radius of curvature of distorted thrust bearing surface
radius ratio, ri/r0

temperature

reference temperature

mechanical power required to overcome the friction torque
thrust load, lbs.

axial or longitudinal coordinate

coefficient of lineal thermal expansion, ft/ft/°F
spiral angle of grooves, measured from the circumference

local groove-ridge gap ratio

groove depth

r/ro, ri/ro, etc.

coefficient of thermal conductivity, Btu/ft/°F/sec. for Btu/ft/°F/hr.

as noted.



> T = =

compressibility number

constant of integration

viscosity of lubricant

distortion parameter, 12J«/ (Apa rozwa)

angular speed, radians/second

-14-
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